ASTM A333/A333M

ASTM A333/A333M Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature Service and Other Applications with Required Notch Toughness.

Download PDF

ASTM A333/A333M specification covers wall seamless and welded carbon and alloy steel pipe intended for use at low temperatures. The pipe shall be made by the seamless or welding process with the addition of no filler metal in the welding operation. All seamless and welded pipes shall be treated to control their microstructure. Tensile tests, impact tests, hydrostatic tests, and nondestructive electric tests shall be made in accordance to specified requirements.

ASTM A333/A333M is a significant standard that holds great importance in the field of materials and manufacturing.

This standard specifically pertains to seamless and welded steel pipes for low-temperature service. It provides precise guidelines and specifications to ensure the quality and performance of these pipes in cold environments.

Pipes that adhere to ASTM A333/A333M are engineered to withstand the challenges of low temperatures without cracking or losing their mechanical properties. This makes them essential in applications such as cryogenic systems, refrigeration, and gas processing where reliable operation at low temperatures is crucial.

The strict requirements of this standard regarding material selection, manufacturing processes, and testing ensure that the pipes meet the highest standards of durability and safety.

In industries where the integrity of pipes in low-temperature conditions is non-negotiable, ASTM A333/A333M serves as a trusted benchmark for quality and dependability.

Specifications

ASTM A333/A333M is the standard specification for seamless and welded carbon and alloy steel pipes designed for use in low-temperature environments. These pipes are commonly used in industries where cold temperatures could negatively affect the material properties of the piping systems. ASTM A333 pipes are available in various grades, including Grade 1, Grade 6, and Grade 3, each offering unique mechanical and chemical properties.

Applications

ASTM A333/A333M low-temperature carbon steel pipes are extensively used in industries that involve the transfer of gases and fluids at cold temperatures, such as:

The ASTM A333/A333M low-temperature carbon steel pipes offer excellent performance and durability in cold environments. With multiple grades available, they are ideal for use in industries where reliable and efficient piping systems are essential, particularly in extreme temperature conditions. To learn more about specific grade requirements or custom sizing, reach out to a trusted supplier or manufacturer.

Mechanical requirements of ASTM A333 alloy pipe

Grade Tensile Strength (MPa) Yield Point (MPa) Elongation (%)
Y X
ASTM A333 Grade 1 ≥380 ≥205 ≥35 ≥25
ASTM A333 Grade 3 ≥450 ≥240 ≥30 ≥20
ASTM A333 Grade 4 ≥415 ≥240 ≥30 ≥16.5
ASTM A333 Grade 6 ≥415 ≥240 ≥30 ≥16.5
ASTM A333 Grade 7 ≥450 ≥240 ≥30 ≥22
ASTM A333 Gr. 8 ≥690 ≥515 ≥22
ASTM A333 Grade 9 ≥435 ≥315 ≥28
ASTM A333 Grade 10 ≥550 ≥450 ≥22
ASTM A333 Grade 11 ≥450 ≥240 ≥18

*The elongation values are furnished on the basis of standard round 2 inch or 50 mm(or 4D) specimens.

*Elongation of Grade 11 is for all walls and small sizes tested in full section.

Chemical composition of ASTM A333 alloy pipe

Grade Chemical Composition (%)
C Si Mn P S Cr Ni Cu Mo V Al
Grade 1 ≤0.30 0.40-1.06 ≤0.025 ≤0.025
Grade 3 ≤0.19 0.18-0.37 0.31-0.64 ≤0.025 ≤0.025 3.18-3.82
Grade 4 ≤0.12 0.18-0.37 0.50-1.05 ≤0.025 ≤0.025 0.44-1.01 0.47-0.98 0.40-0.75 0.04-0.30
Grade 6 ≤0.30 ≥0.10 0.29-1.06 ≤0.025 ≤0.025
Grade 7 ≤0.19 0.13-0.32 ≤0.90 ≤0.025 ≤0.025 2.03-2.57
Grade 8 ≤0.13 0.13-0.32 ≤0.90 ≤0.025 ≤0.025 8.40-9.60
Grade 9 ≤0.20 0.40-1.06 ≤0.025 ≤0.025 1.60-2.24 0.75-1.25
Grade 10 ≤0.20 0.10-0.35 1.15-1.50 ≤0.03 ≤0.015 ≤0.15 ≤0.25 ≤0.015 ≤0.50 ≤0.12 ≤0.06
Grade 11 ≤0.10 ≤0.35 ≤0.6 ≤0.025 ≤0.025 ≤0.50 35.0-37.0 ≤0.50

*For Grade 1 and 6, each reduction of 0.01% C below 0.30%, an increase of 0.05 % Mn above 1.06 % would be permitted to a max. of 1.35%.

*For Grade 6, the limit for columbium may be increased up to 0.05 % on heat analysis and 0.06 % on product analysis.

*Generally, the carbon equivalent C.E = [C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15] shall not exceed 0.43% by heat analysis.

Production specification range of low temperature pipe products

No. Order No. Size description
O.D. /mm W.T. /mm Legnth /m
1 A333 Gr.6 A333 Gr.6/X42NS 10-127 1-20 6-12.0
42-114.3 3.5-6 6-12.2
42-114.3 6-12 6-12.2
114.3-180 3.8-8 6-12.2
114.3-180 8-22 6-12.2
68-180 10-14 6-12.2
69-254 14-55 6-12.2
140-340 6-8 6-12.2
140-368 8-42 6-12.2
318-720 14-50 4-12.5
2 A333 Gr.6/X52QS 42-114.3 3.5-12 6-12.2
114.3-180 3.8-22 6-12.2
68-254 10-40 6-12.2
140-368 6-40 6-12.2
318-720 14-40 4-12.5
140-368 6-25 6-12.2
318-720 14-25 4-12.5
3 16MnDG 10-127 1-20 6-12.0
42-114.3 3.5-12 6-12.2
114.3-180 3.8-22 6-12.2
68-254 10-55 6-12.2
140-368 6-42 6-12.2
318-720 14-120 4-12.5

Strike temperature condition

Crade The lowest temperature for strike test
ASTM A333 Grade 1 -50 -45
ASTM A333 Grade 3 -150 -100
ASTM A333 Grade 4 -150 -100
ASTM A333 Grade 6 -50 -45
ASTM A333 Grade 7 -100 -75
ASTM A333 Grade 8 -320 -195
ASTM A333 Grade 9 -100 -75
ASTM A333 Grade 10 -75 -60
FAQ FAQ

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

  • Increased hardenability.
  • Increased corrosion resistance.
  • Retention of hardness and strength.
  • Nearly all alloy steels require heat treatment in order to bring out their best properties.

Alloying Elements & Their Effects

  • Chromium – Adds hardness. Increased toughness and wear resistance.
  • Cobalt – Used in making cutting tools; improved Hot Hardness (or Red Hardness).
  • Manganese – Increases surface hardness. Improves resistance to strain, hammering & shocks.
  • Molybdenum – Increases strength. Improves resistance to shock and heat.
  • Nickel – Increases strength & toughness. Improves corrosion resistance.
  • Tungsten – Adds hardness and improves grain structure. Provides improved heat resistance.
  • Vanadium – Increases strength, toughness and shock resistance. Improved corrosion resistance.
  • Chromium-Vanadium – Greatly improved tensile strength. It is hard but easy to bend and cut.

Pipes, Tubes and Hollow Sections

Norms

  • API 5L – Line Pipe
  • ASTM A 53 – Black and Hot-Dipped, Zinc-Coated, Welded and Seamless, Steel Pipe
  • ASTM A 106 – Seamless Carbon Steel Pipe for High-Temperature Service
  • ASTM A 213 – Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes
  • ASTM A 269 – Seamless and Welded Austenitic Stainless Steel Tubing for General Service
  • ASTM A 312 – Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes
  • ASTM A 333 – Seamless and Welded Steel Pipe for Low-Temperature Service
  • ASTM A 335 – Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service
  • ASTM A 358 – Electric-Fusion-Welded Austenitic Chromium-Nickel Stainless Steel Pipe for High-Temperature Service and General Applications
  • ASTM A 671 – Electric-Fusion-Welded Steel Pipe for Atmospheric and Lower Temperatures
  • ASTM A 672 – Electric-Fusion-Welded Steel Pipe for High-Pressure Service at Moderate Temperatures
  • ASTM A 790 – Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe
  • ASTM A 928 – Ferritic/Austenitic (Duplex) Stainless Steel Pipe Electric Fusion Welded with Addition of Filler Metal
  • EN 10208-2 – Steel pipes for pipelines for combustible fluids – Part 2: Pipes of requirement class B
  • EN 10210-1/2 – Hot finished structural hollow sections of non-alloy and fine grain steels
  • EN 10216-1 – Seamless steel tubes for pressure purposes – Part 1: Non-alloy steel tubes with specified room temperature properties
  • EN 10216-2 – Seamless steel tubes for pressure purposes – Part 2: Non-alloy and alloy steel tubes with specified elevated temperature properties
  • EN 10217-1 – Welded steel tubes for pressure purposes – Part 1: Non-alloy steel tubes with specified room temperature properties
  • EN 10217-2 – Welded steel tubes for pressure purposes – Part 2: Electric welded non-alloy and alloy steel tubes with specified elevated temperature properties
  • EN 10219-1/2 – Cold formed welded structural hollow sections of non-alloy and fine grain steels
  • EN 10297-1 – Seamless circular steel tubes for mechanical and general engineering purposes – Part 1 Non-alloy and alloy steel tubes

Grade

  • API 5L Gr. A, B, X42, X52, X60, X65, X70
  • ASTM A 53 Gr. A, Gr. B
  • ASTM A106 Gr. A, B, C
  • ASTM A 213 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H, T5, T9, T11
  • ASTM A 269 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 312 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 333 Gr. 3, Gr. 6 ASTM A 335 P1, P2, P5, P9, P11, P12, P22, P91, P92
  • ASTM A 358 TP 304, 304L, 304H, 316, 316L, 316H, 321, 321H
  • ASTM A 671 CC 60, CC 65, CC 70
  • ASTM A 672 CC 60, CC 65, CC 70
  • ASTM 790 UNS S31803, UNS S32205, UNS S32750, UNS S32760
  • ASTM A928
  • EN 10208-2 L245, L 290, L360
  • EN 10210-1 S235 JRH, S275 JOH, S275 J2H, S355 JOH, S355 J2H
  • EN 10216-1 P235 TR1/2
  • EN 10216-2 P235 GH, P265 GH
  • EN 10217-1 P235 TR1/2, P275 TR1/2
  • EN 10217-2 P235 GH, P265 GH
  • EN 10219-1 S235 JRH, S275 JOH, S275 J2H, S355 JOH, S355 J2H
  • EN 10297-1 E235, E275, E315, E355, E470

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion and oxidation. Increases hardenability and wear resistance. Increases high temperature strength.
Nickel Increases hardenability. Improves toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high temperature hardness, and wear resistance. Enhances the effects of other alloying elements. Eliminate temper brittleness in steels. Increases high temperature strength.
Manganese Increases hardenability. Combines with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making. Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces fine grain size.
Aluminum Forms nitride in nitriding steels. Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear resistance.
Tungsten Increases hardness at elevated temperatures. Refines grain size.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.

The White Glove Service You Deserve

When you partner with Sunny Steel, you can stop worrying about meeting deadlines thanks to our responsive and timely service. You'll also say goodbye to unnecessary shopping around. Instead, you'll get white glove service from an expert who understands your needs and can get you the materials you need quickly.

application

Materials delivered on-time and at a fair price

application

No delays in production or manufacturing process

application

Meet engineering specifications to ensure top quality

application

World-class customer service ready to help