ASTM A106 Gr.B Pipes

ASTM/ASME A106/SA106 pipe is used in industrial applications involving high heat, including process piping, boiling plants, compression stations and refineries.

Size range(mm):

  • Out diameter:10-324mm
  • Wall Tickness:1-30mm
  • Length:14000mm max
ASTM A106 Gr.B Pipes

ASTM A106/A 106M Standard Covers Seamless Carbon Steel Pipe for high-temperature service in NPS 1/8 TO NPS 48 (DN6 to DN1200) inclusive, with nominal (average) wall thickness as given in ASME B 36.10M. It shall be permissible to furnish pipe having other dimensions provided such pipe complies with all other requirements of this specification. Pipe ordered under this specification shall be suitable for bending, flanging, and similar forming operations, and for welding. When the steel is to be welded, it is presupposed that a welding procedure suitable to the grade of steel and intended use or service will be utilized.

ASTM A106/A 106M covers both seamless hot-finished and cold-finished pipe in sizes up to and including NPS 1/8 TO NPS 48(DN6 to DN1200) outside diameter for round tubes with wall thicknesses as required.

Permissible Variations in Wall Thickness

The minimum wall thickness at any point shall not be more than 12.5% under the nominal wall thickness specified.

Flattening Tests

Although testing is not required, pipe shall be capable of meeting the flattening test requirements of supplementary requirement S3, if tested.

What is ASTM A106

A106 pipe is American standard material, including A, B, C three grades, the ingredients of A106 A is carbon and silicon, the tensile strength grade is 330 MPa. The ingredients of A106 B is carbon、manganese and silicon, the tensile strength grade is 415 MPa. The ingredients of A106 C is carbon, manganese and silicon components, the tensile strength grade is 485 MPa.

ASTM A106 seamless pressure pipes (also known as ASME SA106 pipes) are commonly used in the construction of oil and gas refineries, power plants, petrochemical plants, boilers and ships. These pipes must carry fluids that exhibit higher temperature and pressure levels And gas.

FAQ

Q: What is the difference between pipe design material A106 and SA106?
A: There is no difference between pipe design material A106 and SA106,
Because the 2013 edition of the ASME II material chapter has pointed out that SA106 is consistent with ASTM A106,In addition, SA106 is a grade of American ASME,And A106 is the grade of ASTM.

Q: What does the mark CD in the steel pipe SA106Gr.B standard mean?
A: CD means cold drawn,SA106 stipulates that pipes below DN40 can be hot-rolled or cold-drawn; pipes above DN50 are conventionally hot-rolled. When the manufacturer and the purchaser reach an agreement, cold-drawn manufacturing is allowed.

Q: What is the difference between ASME SA-106 and ASME SA-106M?
A: The difference between ASME SA-106 and ASME SA-106M is that if the size standard is imperial, use ASME SA-106, if the size standard is metric, use ASME SA-106M.

Features Specifications

OD(mm) Wall Thickness Unit(mm)
  2 2.5 3 3.5 4 4.5 5 6 6.5-7 7.5-8 8.5-9 9.5-10 11 12
Φ25-Φ28                
Φ32                
Φ34-Φ36                
Φ38                
Φ40                  
Φ42                  
Φ45                
Φ48-Φ60              
Φ63.5              
Φ68-Φ73                
Φ76        
Φ80        
Φ83        
Φ89        
Φ95        
Φ102        
Φ108        
Φ114          
Φ121          
Φ127          
Φ133          
Φ140            
Φ146            
Φ152            
Φ159            
Φ168            

Note:

Chemical composition (%) of ASTM A106

Grade C≤ Mn P≤ S≤ Si≥ Cr≤ Cu≤ Mo≤ Ni≤ V≤
ASTM A106 Grade A 0.25 0.27-0.93 0.035 0.035 0.10 0.40 0.40 0.15 0.40 0.08
ASTM A106 Grade B 0.30 0.29-1.06 0.035 0.035 0.10 0.40 0.40 0.15 0.40 0.08
ASTM A106 Grade C 0.35 0.29-1.06 0.035 0.035 0.10 0.40 0.40 0.15 0.40 0.08

ASTM A 106 Grade B shall conform to a carbon equivalent (CE) of 0.50 maximum as determined by the following formula:
CE = %C + %Mn/6 + (%Cr + %Mo + %V)/5 + (%Ni + %Cu)/15 . A lower Carbon equivalent ration maximum may be agreed upon between the purchaser and the producer. S5.3 The Carbon equivalent ration shall be reported on the MILL test report.

Mechanical Properties of ASTM A106

Grade Rm Mpa Tensile Strength Yield Point (Mpa) Elongation Delivery Condition
ASTM A106 Grade A ≥330 ≥205 20 Annealed
ASTM A106 Grade B ≥415 ≥240 20 Annealed
ASTM A106 Grade C ≥485 ≥275 20 Annealed

Equivalent Designation

DIN EN BS NFA ASTM ASME
DIN 17175 Grade St 45.8 EN P235GH Grade 10216-2 NFA A 49-215 Grade TU 42-c ASTM A106 Grade B ASME SA 106 Grade B

The chemical composition of the material does not correspond to Chinese materials, and the mechanical properties are similar to Chinese (GB/T699) 20# steel. ASTM is a set of American steel pipe standards. ASTM steel pipe A106 A corresponds to the Chinese standard is GB8163 and the material is 10# steel. A106 B corresponds to the Chinese standard. The GB8163 material is 20#, and A106 Gr.B does not correspond to Chinese materials.


Process

Cold drawn seamless steel tube deformed process

Cold Drawn Seamless Mechanical Tubing (CDS) is a cold drawn 1018/1026 steel tube which offers uniform tolerances, enhanced machinability and increased strength and tolerances compared to hot-rolled products.

Cold drawn seamless steel tube deformed process

Cold drawn steel tube is with hot-rolled steel coil as raw material, and tandem cold rolling pickled to remove oxide scale, its finished rolling hard roll, rolling hard volumes due to the continuous cold deformation caused by cold hardening strength, hardness increased indicators declined tough plastic, stamping performance will deteriorate, which can only be used for simple deformation of the parts.

Rolling hard roll can be used as the raw material of the hot-dip galvanizing plant, hot dip galvanizing line set annealing line. Rolling hard roll weight is generally 6 to 13.5 tons, the coil diameter of 610mm.

Hot rolled seamless steel pipe deformed process

Hot-rolled seamless steel pipe production base deformation process can be summarized as three stages: perforation, extension and finishing.

Hot rolled seamless steel pipe deformed process

The main purpose of the perforation process is to become a solid round billet piercing hollow shell. Capillary in the specifications, accuracy and surface quality can not meet the requirements of the finished product, further improvements are needed to deform the metal through. The main purpose of the stretching machine is further reduced sectional view (main compression wall) for a larger axial extension, so that the capillary improved dimensional accuracy, surface quality and organizational performance.

After stretching machine rolled steel pipe shortage collectively need further molding mill in order to achieve the requirements of the finished pipe. Rolled steel due to pass in the method widely used in the production of seamless steel tubes.

So far, due to the method pass rolling steel can be divided into two categories: core pension without rolling rolling (hollow body rolling), and with the mandrel. Sizing machines, reducing mill and stretch reducing mill belonging to the hole without mandrel type continuous rolling mills are generally coffin. Its main purpose is to reduce the diameter of the deformation process or sizing get finished steel, the wall thickness of process control, can make thinning, thickening or nearly unchanged.

All the traditional hole-type rolling machine with mandrel belong to extend machine. The main purpose is to reduce the deformation process perforated capillary wall thickness and outer diameter roll passes in the deformation zone and the mandrel posed, for a larger axial extension. At the same time a certain improvement in the organization, performance, accuracy, surface quality.

Cut to Length

Before cutting pipe and tubing

No matter the material, measure the diameter of the pipe or tube to be cut to ensure that you use the right-size tube cutter for the job. When determining how to make a straight cut, use a tape measure and a pencil or other writing instrument to mark on the surface where you want to cut. If possible, mark around the circumference of a pipe, especially when cutting with a handsaw. Ensure that a cut is as straight as possible by securing the pipe with a vise, clamp, miter box or even duct tape to keep the length from shifting out of place while cutting.

After cutting pipe and tubing

  • Unless a cut is perfectly clean, you should expect to remove burrs from around the edge, especially after sawing.
  • Use a deburring tool to clean the edge after tube cutting.
  • You may opt to use a metal file on the cut of a metal pipe.
Cut to length

Application

Alloy steel pipes are ideally suitable for chemical, petrochemicals, and other energy-related applications.

The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.

Alloy steel can be used in process area where carbon steel has limitation such as

  • High-temperature services such as heater tubes
  • Low-temperature services such as cryogenic application
  • Very high presser service such as steam header

As an important element of steel products, alloy steel pipe can be divided into seamless steel pipe and welded steel pipe according to the manufacturing technique and tube billet shape.

Here you can see the common alloy steel grade that you will come across.

  • For Pipes: ASTM A335 Gr P1, P5, P11, P9
  • For Wrought Fittings: ASTM A234 Gr.WP5, WP9, WP11
  • For Forged Fittings: ASTM A182 F5, F9, F11 etc.

Why the application of alloy steel pipe is wider than others

application

There are many kinds of materials used for transport in industrial production. Specifically we will have more choices and it is not limited to the use of alloy steel pipe. But even in the face of more choices, many people tend to choose alloy steel pipe. People make their own choices will have their own reasons. This means the alloy steel pipe application has its own advantages. Compared with transmission lines made of other materials, after it meets the basic application requirements, its quantity is lighter. Then in the practical application of alloy steel pipe, it will have more advantages because of this. Besides its physical characteristic advantage, it also has economic advantages. The wide application of alloy steel pipe is with kinds of reasons. So in practical usage, we can exploit the advantages to the full, in this way can we get more profits in these applications of alloy steel pipe.

What requirements should alloy steel pipe application meet

The transportation of kinds of gases or liquids in production needs to rely on alloy steel pipe. This shows that the actual role of alloy steel pipe application is important. High temperature resistant and low temperature resistant is the tolerance of temperature. In the practical application of alloy steel pipe, there will be many materials need to be transported. However their temperatures are not the same. So this can be the basic requirement to alloy steel pipe. It needs more corrosion resistance. Corrosion resistant material is the best material during transporting, because it is corrosion resistant. So it can be used in more occasions. And it is definitely very convenient for users.

The biggest advantages of alloy steel pipe

Can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy steel pipe total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy steel pipe to provide a wider space for the development of the industry. The future needs of the average annual growth of China’s high-pressure alloy steel pipe long products up to 10-12%.

Specification, standard and identification of alloy steel pipes

Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.

Industries We Serve

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The biggest advantages of alloy steel pipe can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy tube total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy tube to provide a wider space for the development of the industry. According to the Chinese Special Steel Association alloy pipe Branch Expert Group, the future needs of the average annual growth of China’s high-pressure alloy pipe long products up to 10-12%.


Inspection

Chemical composition inspection, mechanical properties test(tensile strength,yield strength, elongation, flaring, flattening, bending, hardness, impact test), surface and dimension test,no-destructive test, hydrostatic test.

PMI

identification of the chemical composition of the metal used to manufacture the fitting. Uses PMI sensors, including X-ray fluorescence or optical emission spectrometry.

PMI
PMI
PMI
PMI
PMI
PMI

Size measurement

Size measurement
Size measurement
Size measurement
Size measurement
Size measurement

Seamless pipes with compound bevels as per ASME B16-25 And ASTM A333

ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe

Delivery

Steel pipe delivery status(condition)

Steel pipe delivery status(condition): cold / hard (BK), cold / soft (BKW), after cold stress relief annealing (BKS), annealing (GBK), normalized (NBK).

Condition on delivery of steel pipe

Term Symbol Explanation
Cold-finished/hard (cold-finished as-drawn) BK No heat treatment after the last cold-forming process. The tubes therefore have only low deformability.
Cold-finished/soft (lightly cold-worked) BKW After the last heat treatment there is a light finishing pass (cold drawing) With proper subsequent processing, the tube can be cold-formed (e.g. bent, expanded) within certain limits.
Annealed GBK After the final cold-forming process the tubes are annealed in a controlled atmosphere or under vacuum.
Normalized NBK The tubes are annealed above the upper transformation point in a controlled atmosphere or under vacuum.

The general cold strip mills, volume should go through continuous annealing (CAPL unit) to eliminate cold hardening and rolling stress, or batch annealing reach the mechanical properties of the corresponding standard specifies. Cold rolled steel surface quality, appearance, dimensional accuracy better than hot-rolled plate, and right-rolled thin product thickness is about 0.18mm, so the majority of users favor.

Cold rolled steel coil substrate products deep processing of high value-added products. Such as electro-galvanized, hot dip galvanized, electro-galvanized fingerprint resistant, painted steel roll damping composite steel, PVC laminating steel plates, etc., so that the excellent quality of these products has a beautiful, high resistance to corrosion, has been widely used.

Cold rolled steel coil finishing after annealing, cut the head, tail, trimming, flattening, smooth, heavy volume, or longitudinal clipboard. Cold-rolled products are widely used in automobile manufacturing, household electrical appliances, instruments, switches, buildings, office furniture and other industries. Steel plate strapping package weight of 3 to 5 tons. Flat sub-volume typically 3 to 10 tons / volume. Coil diameter 6m.

Packing

Bare packing/bundle packing/crate packing/wooden protection at the both sides of tubes and suitably protected for sea-worthly delivery or as requested.

There are probably hundreds of different methods for packing a pipe, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.

Steel strips bunding for fixed pipes

Our packing can meet any needs of the customers.

Packing
Packing
Packing
Packing
Packing
Packing

Placing steel pipes into containers

Packing
Packing
Packing
Packing
Packing
Packing

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion   and oxidation. Increases hardenability and wear resistance. Increases high   temperature strength.
Nickel Increases hardenability. Improves   toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high   temperature hardness, and wear resistance. Enhances the effects of other   alloying elements. Eliminate temper brittleness in steels. Increases high   temperature strength.
Manganese Increases hardenability. Combines   with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high   temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to   stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making.   Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces   fine grain size.
Aluminum Forms nitride in nitriding steels.   Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear   resistance.
Tungsten Increases hardness at elevated   temperatures. Refines grain size.

Hot products

Star

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.