ASTM A519-89/ASME SA519 Standard specification

ASTM A519- specification covers for several grades of carbon and alloy steel mechanical tubing, either hot-finished or cold-finished. The steel used in the mechanical tubing may be cast in ingots or may be strand cast. When steel of different grades is sequentially strand cast, identification of the resultant transition material is required.

The seamless tubing is a tubular product made without a welded seam. It is usually manufactured by hot working steel, and if necessary, by subsequently cold finishing the hot-worked tubular product to produce the desired shape, dimensions and properties. The tubes shall be furnished in the following shapes: round, square, rectangular and special sections. Heat analysis shall be made to determine the percentages of the elements specified. If secondary melting processes are used, the heat analysis shall be obtained from one remelted ingot or the product of one remelted ingot of each primary melt. The tubing shall be coated with a film of oil before shaping to retard rust when specified.

Material Comparison Tables (ASTM →KS, JIS, DIN, BS, NBN, NF, UNI)

Download Abrasion resistant ceramic lined pipes, Bends and elobws specifications & size range

Application:

  • For mechanical engineering.
  • For mechanical and pressure use,and also for transporting steam,water,gas and etc.

Features Specifications
OD(mm) Wall Thickness Unit(mm)
  2 2.5 3 3.5 4 4.5 5 6 6.5-7 7.5-8 8.5-9 9.5-10 11 12
Φ25-Φ28                
Φ32                
Φ34-Φ36                
Φ38                
Φ40                  
Φ42                  
Φ45                
Φ48-Φ60              
Φ63.5              
Φ68-Φ73                
Φ76        
Φ80        
Φ83        
Φ89        
Φ95        
Φ102        
Φ108        
Φ114          
Φ121          
Φ127          
Φ133          
Φ140            
Φ146            
Φ152            
Φ159            
Φ168            
Grade and Chemical Composition (%)

Grade

C Mn P≤ S≤ Si Cr Mo
1008

≤0.10

0.30-0.50

0.040 0.050 - - -
1010 0.08-0.13 0.30-0.60 0.040 0.050 - - -
1018 0.15-0.20 0.60-0.90 0.040 0.050 - - -
1020 0.18-0.23 0.30-0.60 0.040 0.050 - - -
1025 0.22-0.28 0.30-0.60 0.040 0.050 - - -
1026 0.22-0.28 0.60-0.90 0.040 0.050 - - -
4130 0.28-0.33 0.40-0.60 0.040 0.050 0.15-0.35 0.80-1.10 0.15-0.25
4140 0.38-0.43 0.75-1.00 0.040 0.050 0.15-0.35 0.80-1.10 0.15-0.25
Mechanical Properties
Grade Condition MPa Tenslle Point Yield Point Elongation
1020 CW

≥414

≥483
≥5%
SR ≥345 ≥448 ≥10%
A ≥193 ≥331 ≥30%
N ≥234 ≥379 ≥22%
1025 CW ≥448 ≥517 ≥5%
SR ≥379 ≥483 ≥8%
A ≥207 ≥365 ≥25%
N ≥248 ≥379 ≥22%
4130 SR ≥586 ≥724 ≥10%
A ≥379 ≥517 ≥30%
N ≥414 ≥621 ≥20%
4140 SR ≥689 ≥855 ≥10%
A ≥414 ≥552 ≥25%
N ≥621 ≥855 ≥20%

Please note the meaning of below abbreviation in table 2:



Alloy steel specification, Standard and identification

Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.

Q&A

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are:

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

  • Increased hardenability.
  • Increased corrosion resistance.
  • Retention of hardness and strength.

Nearly all alloy steels require heat treatment in order to bring out their best properties.

Alloying Elements & Their Effects

  • Chromium – Adds hardness. Increased toughness and wear resistance.
  • Cobalt – Used in making cutting tools; improved Hot Hardness (or Red Hardness).
  • Manganese – Increases surface hardness. Improves resistance to strain, hammering & shocks.
  • Molybdenum – Increases strength. Improves resistance to shock and heat.
  • Nickel – Increases strength & toughness. Improves corrosion resistance.
  • Tungsten – Adds hardness and improves grain structure. Provides improved heat resistance.
  • Vanadium – Increases strength, toughness and shock resistance. Improved corrosion resistance.
  • Chromium-Vanadium – Greatly improved tensile strength. It is hard but easy to bend and cut.
ASTM A335 P11 alloy pipe


SUNNY STEEL

Our team are highly trained and experienced in servicing and producing all types of steel supplies. Whether you've got a large construction project, or need parts for industrial machinery, our team of steel fabrication consultants will ensure that your project is provided with the parts you need, when you need them.

Link exchange

Copyright © 2011 Sunny Steel Enterprise Ltd.  All Rights Reserved ICP No.:08010763