ASTM A335 seamless ferritic alloy steel pipe for high temperature service

Astm A335 standard specication for seamless ferritic alloy-steel pipe for high-temperature service

ASTM A335 standard is issued under the fixed designation A 335/A 335M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision.

Astm A335 standard specication for seamless ferritic alloy-steel pipe

This specification covers nominal (average) wall seamless alloy-steel pipe intended for high-temperature service (Mote 1). Pipe ordered to this specification shall be suitable for bending, flanging (vanstoning), and similar forming operations, and for fusion welding.

The main products of steel / steel grade:

Chemical Compositions(%) of ASTM A335/335M

Grade  C Si Mn P(≤) S(≤) Cr Mo
P11 0.05-0.15 0.50-1.00 0.30-0.60 0.025 0.025 1.00-1.50 0.44-0.65
P12 0.05-0.15 ≤0.50 0.30-0.61 0.025 0.025 0.80-1.25 0.44-0.65
P22 0.05-0.15 ≤0.50 0.30-0.60 0.025 0.025 1.90-2.60 0.87-1.13
P5 ≤0.15 ≤0.50 0.30-0.60 0.025 0.025 4.00-6.00 0.45-0.65

Mechanical Properties of ASTM A335/335M:

Grade Yield Strength (Mpa) Tensile Strength (Mpa) Elongation (%)
P11 ≥205 ≥415 20
P12 ≥220 ≥415 20
P22 ≥205 ≥415 20
P5 ≥205 ≥415 20

Selection will depend upon design, service conditions, mechanical properties, and high-temperature characteristics.

Besides, ASTM A335 covers nominal wall and minimum wall seamless ferritic alloy-steel pipe intended for high-temperature service. Pipe ordered to this specification shall be suitable for bending, flanging (vanstoning), and similar forming operations, and for fusion welding. Selection will depend upon design, service conditions, mechanical properties, and high-temperature characteristics.

*The UNS designation is established in accordance with Practice E527, and SAE J 1086 – Practice for numbering metals and alloys.

*All values are the maximum unless a range is furnished.

*A – 4 times of Carbon≤Titanium≤0.70% or Columbium:8 times of Carbon~10 times of Carbon.

*B – V:0.20-0.30, Cb:0.02-0.08, B: 0.0010-0.006, N:≤0.0015, Al:≤0.030, W:1.45-1.75, Ni:≤0.40, Ti: 0.005-0.060, Ti/N:≥3.5.

*C – Ni:1.00-1.30, Cu:0.50-0.80, Cb:0.015-0.045, V:≤0.02, N:≤0.02, Al:≤0.050.

*D – V:0.18-0.25, N:0.030-0.070, Ni:≤0.40, Al:≤0.02, Cb:0.06-0.10, Ti:≤0.01, Zr:≤0.01.

*E – V:0.15-0.25, N:0.03-0.07, Ni:≤0.40, Al:≤0.02, Cb:0.04-0.09, W:1.5-2.0, B:0.001-0.006, Ti:≤0.01, Zr:≤0.01.

*F – V:0.15-0.30, W:1.30-2.50, Cu:0.30-1.70, Cb:0.04-0.10, B:0.0005-0.005, N:0.040-0.1, Ni:≤0.5, Al:≤0.02, (Ti&Zr):≤0.01.

*G – V:0.18-0.25, Ni:≤0.40, Cb:0.060-0.10, B:0.0003-0.006, N:0.04-0.09, Al:≤0.02, W:0.90-1.10, Ti:≤0.01, Zr:≤0.01.

Specific grades.

Equivalent Alternatives

The alternative to certain grade of ASTM A335 can be found in ASTM A426 and ASTM A369. ASTM A426 is the standard specification for centrifugally cast ferritic alloy steel pipe for high-temperature service. ASTM A369 is the standard specification for carbon and ferritic alloy steel forged or bored pipe for high-temperature service. Both of them specify relatively equivalent grades of Cr-Mo alloy steel pipe. The main difference between ASTM A335, ASTM A426, and ASTM A369 is the manufacture of the pipe: ASTM A335 – hot rolled or cold drawn; ASTM A426 – centrifugal casting; ASTM A369: forging.

Other standards related to the seamless Cr-Mo alloy steel pipe include: ASTM A213 – standard specification for seamless ferritic and austenitic alloy steel boiler, superheater, and heat exchanger tubes; ASTM A199 – standard specification for seamless cold drawn intermediate alloy steel heat exchanger and condenser tubes; ASTM A200 – standard specification for seamless intermediate alloy steel tubes for refinery service.

Alloy steel specification, Standard and identification

Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.


Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are:

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

  • Increased hardenability.
  • Increased corrosion resistance.
  • Retention of hardness and strength.

Nearly all alloy steels require heat treatment in order to bring out their best properties.

Alloying Elements & Their Effects

  • Chromium – Adds hardness. Increased toughness and wear resistance.
  • Cobalt – Used in making cutting tools; improved Hot Hardness (or Red Hardness).
  • Manganese – Increases surface hardness. Improves resistance to strain, hammering & shocks.
  • Molybdenum – Increases strength. Improves resistance to shock and heat.
  • Nickel – Increases strength & toughness. Improves corrosion resistance.
  • Tungsten – Adds hardness and improves grain structure. Provides improved heat resistance.
  • Vanadium – Increases strength, toughness and shock resistance. Improved corrosion resistance.
  • Chromium-Vanadium – Greatly improved tensile strength. It is hard but easy to bend and cut.
ASTM A335 P11 alloy pipe


Our team are highly trained and experienced in servicing and producing all types of steel supplies. Whether you've got a large construction project, or need parts for industrial machinery, our team of steel fabrication consultants will ensure that your project is provided with the parts you need, when you need them.

Link exchange

Copyright © 2011 Sunny Steel Enterprise Ltd.  All Rights Reserved ICP No.:08010763